Home > INIT > prepINITModel.m

prepINITModel

PURPOSE ^

prepINITModel

SYNOPSIS ^

function prepData = prepINITModel(origRefModel, taskStruct, spontRxnNames, convertGenes, customRxnsToIgnore, extComp, skipScaling)

DESCRIPTION ^

 prepINITModel

 The purpose of this function is to run time-consuming calculation steps that are not
 dependent on the RNA-Seq data.

 origRefModel      The model to use. Expected to be something such as Human-GEM, 
                   Mouse-GEM, etc.
 taskStruct        The essential tasks. Can be loaded with for example
                   taskStruct = parseTaskList('../data/metabolicTasks_Essential.txt');
 spontRxnNames     The spontaneous rxns. (optional, default {})
 convertGenes      If true the genes are converted to gene names (from 
                   ENSEMBL) (optional, default false)
 customRxnsToIgnore These reactions can be ignored in the ignore mask 
                   (specifying b7=1) (optional, default = {})
 extComp           Name of the external compartment, typically 's' or 'e'. This
                   is used for identifying exch and import rxns (optional, default = 'e')
 prepData          The resulting prepData structure which is used as input to ftINIT
 skipScaling       If true the scaling step is not run on the minimal model. The 
                   scaling is there to remove large differences between the 
                   stoichiometric coefficients within a reaction, since such
                   differences creates numerical issues in the ftINIT algorithm 
                   due to limitations in solver resolution. However,
                   the current scaling step is also risky and may lead to that
                   some reactions cannot carry flux, since it changes the stoichiometry
                   of the reactions with large differences. If you experience problems
                   where the solution is infeasible, it may be worth trying to turn off
                   the scaling. Note that it is only the minModel that is scaled,
                   the scaling will not be present in the final model.
                   Default: (optional, default = false)
 
 Usage: prepData = prepINITModel(origRefModel, taskStruct, spontRxnNames, convertGenes, customRxnsToIgnore, extComp)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function prepData = prepINITModel(origRefModel, taskStruct, spontRxnNames, convertGenes, customRxnsToIgnore, extComp, skipScaling)
0002 % prepINITModel
0003 %
0004 % The purpose of this function is to run time-consuming calculation steps that are not
0005 % dependent on the RNA-Seq data.
0006 %
0007 % origRefModel      The model to use. Expected to be something such as Human-GEM,
0008 %                   Mouse-GEM, etc.
0009 % taskStruct        The essential tasks. Can be loaded with for example
0010 %                   taskStruct = parseTaskList('../data/metabolicTasks_Essential.txt');
0011 % spontRxnNames     The spontaneous rxns. (optional, default {})
0012 % convertGenes      If true the genes are converted to gene names (from
0013 %                   ENSEMBL) (optional, default false)
0014 % customRxnsToIgnore These reactions can be ignored in the ignore mask
0015 %                   (specifying b7=1) (optional, default = {})
0016 % extComp           Name of the external compartment, typically 's' or 'e'. This
0017 %                   is used for identifying exch and import rxns (optional, default = 'e')
0018 % prepData          The resulting prepData structure which is used as input to ftINIT
0019 % skipScaling       If true the scaling step is not run on the minimal model. The
0020 %                   scaling is there to remove large differences between the
0021 %                   stoichiometric coefficients within a reaction, since such
0022 %                   differences creates numerical issues in the ftINIT algorithm
0023 %                   due to limitations in solver resolution. However,
0024 %                   the current scaling step is also risky and may lead to that
0025 %                   some reactions cannot carry flux, since it changes the stoichiometry
0026 %                   of the reactions with large differences. If you experience problems
0027 %                   where the solution is infeasible, it may be worth trying to turn off
0028 %                   the scaling. Note that it is only the minModel that is scaled,
0029 %                   the scaling will not be present in the final model.
0030 %                   Default: (optional, default = false)
0031 %
0032 % Usage: prepData = prepINITModel(origRefModel, taskStruct, spontRxnNames, convertGenes, customRxnsToIgnore, extComp)
0033 
0034 
0035 if nargin < 3
0036     spontRxnNames = {}; 
0037 end
0038 
0039 if nargin < 4
0040     convertGenes = false; 
0041 end
0042 
0043 if nargin < 5
0044     customRxnsToIgnore = {}; 
0045 end
0046 
0047 if nargin < 6
0048     extComp = 'e';
0049 end
0050 
0051 if nargin < 7
0052     skipScaling = false;
0053 end
0054 disp('Step 1: Gene rules')
0055 [origRefModel.grRules, origRefModel.rxnGeneMat] = standardizeGrRules(origRefModel, true);
0056 
0057 if convertGenes %For mouse we might want to translate in the opposite direction - this has to be done before calling this function in that case.
0058     [origRefModel.grRules, origRefModel.genes, origRefModel.rxnGeneMat] = translateGrRules(origRefModel.grRules, 'Name');
0059 end
0060 
0061 
0062 % Get list of all dead-end/inacessible/constrained reactions in the model.
0063 % We don't merge linear dependent reactions here, that will happen later.
0064 % We also don't remove reversibility here, we don't want that in the final
0065 % models produced. Therefore, this is done as a separate step.
0066 % This takes quite some time to run
0067 disp('Step 2: First simplification')
0068 [~,deletedDeadEndRxns] = simplifyModel(origRefModel,true,false,true,true,true);
0069 
0070 % get reduced model
0071 cModel = removeReactions(origRefModel,deletedDeadEndRxns,false,true);
0072 
0073 
0074 %Then, run the tasks to find out which reactions are essential. These rxns
0075 %will be forced to carry flux in the optimization later
0076 
0077 % determine reactions essential for tasks - takes ~10 min
0078 % need to add boundary mets first - but only to a temporary model, we don't
0079 % want those for further processing
0080 disp('Step 3: Check tasks (~10 min)')
0081 if ~isempty(taskStruct)
0082     bModel = closeModel(cModel);
0083     [taskReport, essentialRxnMat, ~, essentialFluxes] = checkTasks(bModel,[],true,false,true,taskStruct);
0084 
0085     %extract the essential rxns:
0086     sel = sum(essentialRxnMat,2) > 0;
0087     selInd = find(sel);
0088     essentialRxns = bModel.rxns(selInd);%382 rxns for human-GEM
0089 
0090     %Find metabolites present in taskStruct. We want to avoid removing
0091     %these metabolites from the final model (even though they may no longer
0092     %participate in any reacitons) so that the final model is still able to
0093     %complete all of the tasks without any errors.
0094     taskMets = union(vertcat(taskStruct.inputs),vertcat(taskStruct.outputs));
0095     taskMets = union(taskMets, parseRxnEqu(vertcat(taskStruct.equations)));
0096     modelMets = strcat(cModel.metNames,'[',cModel.comps(cModel.metComps),']');
0097     [inModel,metInd] = ismember(taskMets,modelMets);
0098     essentialMetsForTasks = cModel.mets(metInd(inModel));%118 mets
0099 
0100     %Remove tasks that cannot be performed
0101     taskStruct(taskReport.ok == false) = [];
0102 
0103 else
0104     essentialRxns = {};
0105     essentialMetsForTasks = {};
0106     taskReport = {};
0107 end
0108 
0109 
0110 % remove metabolites separately to avoid removing those needed for tasks
0111 unusedMets = cModel.mets(all(cModel.S == 0,2));%1248 in Human-GEM
0112 cModel = removeMets(cModel, setdiff(unusedMets,essentialMetsForTasks));
0113 
0114 if ~isempty(taskStruct)
0115 
0116     %Here, we decide on a direction in which the essential reactions should be forced.
0117     essentialRevDir = false(length(essentialRxns),1);
0118     pp = zeros(length(essentialRxns),1);
0119     nn = zeros(length(essentialRxns),1);
0120     for i = 1:length(selInd)
0121         pos = sum(essentialFluxes(selInd(i),essentialRxnMat(selInd(i),:)) > 0);
0122         neg = sum(essentialFluxes(selInd(i),essentialRxnMat(selInd(i),:)) < 0);
0123         essentialRevDir(i) = pos < neg;
0124         pp(i) = pos;
0125         nn(i) = neg;
0126     end
0127 
0128     %sum(pp>0 & nn>0) %0, so it is not a big problem that different tasks share essential
0129     %reactions but in different directions, at least no such cases exist now, so we ignore this for now.
0130 
0131     %Now create a minimal model for the MILP - we want to make this as small as we can, but we
0132     %don't want to use this later when we create the final models - just for the first MILP.
0133     %We don't want boundary metabolites in here either.
0134 
0135     %We do a trick with the essential rxns here:
0136     %What we want is to get rid of the reversibility of the reactions, because reversible reactions require
0137     %an integer each in the MILP, and we can also get the case that it may be cheaper to force flux in the wrong direction, which
0138     %will probably not give the gap-filling of reactions that we want.
0139     %So, we simply change the reversible reactions to irreversible, and flip their direction if the direction
0140     %to force flux in is negative. We don't need to do anything else, runINIT will then handle all essential rxns
0141     %as irreversible (and will not add any integers etc. for them).
0142 
0143     minModel1 = cModel;
0144     %for the essential rxns where we should force flux in the positive direction, just make them irreversible
0145     %for the negative direction, we do the same, but also flip the direction of the reaction
0146 
0147     %first flip the reactions with negative direction
0148     %constructEquations(minModel1,minModel1.rxns(selInd(essentialRevDir))) %looks good
0149     minModel1 = reverseRxns(minModel1, minModel1.rxns(selInd(essentialRevDir)));
0150     %constructEquations(minModel2,minModel2.rxns(selInd(essentialRevDir))) %looks good
0151 
0152     %Then make them irreversible
0153     minModel1.rev(selInd) = 0;
0154     minModel1.lb(selInd) = 0;
0155 else
0156     minModel1 = cModel;
0157 end
0158 %Now, remove reversibility on any reactions that can only be run in one direction - that simplifies the problem
0159 %This takes a long time to run (at least an hour or so).
0160 %This is an important step, we go from 5533 to 3734 reversible rxns, which reduces the size of the MILP,
0161 %since irreversible rxns are easier to handle.
0162 disp('Step 4: Second simplification (~1 hour)')
0163 minModel2 = simplifyModel(minModel1,false,false,false,false,false,false,true);
0164 
0165 disp('Step 5: Final work')
0166 
0167 %Now, merge all linear dependent rxns - this reduces the size of the model a lot.
0168 %Size goes from 11888 rxns to 7922 rxns for human-GEM, so this is an important step
0169 [minModel3,origRxnIds,groupIds]=mergeLinear(minModel2, {});
0170 
0171 %we now need to figure out what happened to the essential rxns in the merge step above.
0172 %Note that it would be ideal to run checkTasks on the result from mergeLinear, but that doesn't work.
0173 %The exchange rxns have in many cases been merged with other reactions, making it difficult to run
0174 %the tasks. So, instead we run checkTasks before, and figure out which merged reactions the
0175 %essential reactions belong to now
0176 
0177 %It may be possible to create a minModel2b, run mergeLinear on that (which is quick), and
0178 %then run checkTasks on the minimized model. Would be good to check if this gives the
0179 %same result, I'm not sure. The code would get less complicated.
0180 
0181 
0182 if ~isempty(taskStruct)
0183 
0184     %find all potential rxns
0185     rxnIndOrig = ismember(origRxnIds, essentialRxns);
0186     ids = unique(groupIds(rxnIndOrig));
0187     ids = ids(ids > 0);%0 means it has not been merged
0188     rxnCandidates = unique([essentialRxns;origRxnIds(ismember(groupIds, ids))]);%388, essentialRxns is 382
0189     newEssentialRxns = minModel3.rxns(ismember(minModel3.rxns,rxnCandidates));%196 in Human-GEM
0190     %setdiff(newEssentialRxns, essentialRxns)%only 2, that is very few
0191     %setdiff(essentialRxns, newEssentialRxns)%188, that is very many
0192     %It is probably the case that many essential reactions are linearly dependent on one another, which makes sense.
0193 else
0194     newEssentialRxns = {};
0195 end
0196 %What is left now is to remove some rxns from the problem, such as exchange rxns and spontaneous rxns.
0197 %We set the rxn scores of these to exactly 0, and make sure no other scores are zero.
0198 %runINIT will then handle this, we do >0 and <0 to get positive and negative scores, the rest
0199 %are not included in the problem.
0200 %But, this has to happen in the scoring - we identify the reactions in the origrxns here, and then fix this
0201 %in the scoring for each sample (the function groupRxnScores handles this and is run for each sample).
0202 
0203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0204 %identify the reactions to ignore in the minModel2
0205 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0206 
0207 %Identify reactions that should be ignored by tINIT, i.e. tINIT will not remove these regardless of score
0208 
0209 
0210 [~,exchRxnInd] = getExchangeRxns(minModel2);
0211 toIgnoreExch = false(numel(minModel2.rxns),1);
0212 toIgnoreExch(exchRxnInd) = true;
0213 toIgnoreImportRxns = false(numel(minModel2.rxns),1);
0214 toIgnoreSimpleTransp = false(numel(minModel2.rxns),1);
0215 toIgnoreAdvTransp = false(numel(minModel2.rxns),1);
0216 toIgnoreS = false(numel(minModel2.rxns),1);
0217 
0218 
0219 
0220 %sum(toIgnore) %1500 for Human-GEM
0221 %find simple transport reactions with no GPRs:
0222 %We really only skip the reactions with two metabolites
0223 %where they are the same but different compartments - only skip the transport into the cell for now
0224 numMets = sum(minModel2.S ~= 0, 1);
0225 scomp = find(strcmp(minModel2.comps,extComp));
0226 for i = 1:length(minModel2.rxns)
0227     %check that it has no GPR and that the rxn has two metabolites
0228     if strcmp(minModel2.grRules(i),'') && (numMets(i) == 2)
0229       metsComps = minModel2.metComps(minModel2.S(:,i) ~= 0);
0230       metNames = minModel2.metNames(minModel2.S(:,i) ~= 0);
0231       if metsComps(1) ~= metsComps(2) && (metsComps(1) == scomp || metsComps(2) == scomp) %different compartments, one is the extComp
0232           if strcmp(metNames{1}, metNames{2}) %the same metabolite, it is a transport reaction
0233               toIgnoreImportRxns(i) = true;
0234           end
0235       elseif metsComps(1) ~= metsComps(2) %different compartments, no check for extComp
0236           if strcmp(metNames{1}, metNames{2}) %the same metabolite, it is a transport reaction
0237               toIgnoreSimpleTransp(i) = true;
0238           end
0239       end
0240     else %check for advanced
0241         metsInd = find(minModel2.S(:,i) ~= 0);
0242         %check that we have an even number of mets that is larger than 2 and that we don't have a GPR
0243         if rem(length(metsInd),2) == 0 && length(metsInd) > 2 && isempty(minModel2.grRules{i})
0244             %Now check that we have pairs of metabolites that are transported
0245             SVals = full(minModel2.S(metsInd,i));
0246             metNames = minModel2.metNames(metsInd);
0247             comps = minModel2.metComps(metsInd);
0248             success = true;
0249             while ~isempty(metNames)
0250                 if length(metNames) < 2 %this should not happen
0251                    error('We should never arrive here!');
0252                 end
0253                 metMatch = find(strcmp(metNames(2:length(metNames)),metNames{1})) + 1;
0254                 if length(metMatch) ~= 1 %we want a match, and only one (if there is some other complex transport rxn, we skip that)
0255                    success = false;
0256                    break;
0257                 end
0258                 if (SVals(1) + SVals(metMatch)) ~= 0 %the stoichiometry is not right
0259                    success = false;
0260                    break;
0261                 end
0262                 if comps(1) == comps(metMatch) %they must be in different compartments (maybe this need not to be checked)
0263                    success = false;
0264                    break;
0265                 end
0266                 %now remove the pair and continue with the next
0267                 SVals([1;metMatch]) = [];
0268                 metNames([1;metMatch]) = [];
0269                 comps([1;metMatch]) = [];
0270             end
0271             toIgnoreAdvTransp(i) = success;
0272         end          
0273     end
0274 end
0275 
0276 %Spontaneous reactions:
0277 toIgnoreSpont = ismember(minModel2.rxns, spontRxnNames);%only 10 rxns in human-GEM
0278 
0279 %rxns without GPRs in the s compartment (outside the cell)
0280 sCompInd = find(strcmp(minModel2.comps, extComp));
0281 for i = 1:length(minModel2.rxns)
0282     metsInd = find(minModel2.S(:,i) ~= 0);
0283     %check that it has more than 1 metabolite (not exch rxn) and no GPR
0284     if length(metsInd) > 1 && isempty(minModel2.grRules{i})
0285         if  all(minModel2.metComps(metsInd) == sCompInd)
0286             toIgnoreS(i) = true;
0287         end
0288     end
0289 end
0290 
0291 toIgnoreAllWithoutGPRs = cellfun(@isempty,minModel2.grRules);
0292 
0293 
0294 %sum(toIgnore)%in total 2375 rxns in human-GEM
0295 %sum(toIgnoreAllTransp)%in total 3337 rxns in human-GEM, so 1,000 more
0296 
0297 %Now, try to scale the model to become more favorable for the solver.
0298 %In general, we try to make all fluxes as similar as possible.
0299 %      There is room for improvement here, this function is pretty simple.
0300 %      It only rescales reactions, while it would be possible to rescale
0301 %      metabolites as well (ROS => kROS, albumin => millialbumin, etc., but
0302 %      scaled freely with a mathematical method). It could potentially open up
0303 %      for using less strict margins in the MILP, and make it run faster.
0304 if (skipScaling)
0305     scaledMinModel = minModel3;
0306 else
0307     scaledMinModel = rescaleModelForINIT(minModel3);
0308     scaledMinModel.ub(scaledMinModel.ub > 0) = 1000;
0309     scaledMinModel.lb(scaledMinModel.lb < 0) = -1000;
0310 end
0311 % create data structure with pre-processing results
0312 prepData.taskReport = taskReport;
0313 prepData.essentialRxns = newEssentialRxns; %essential rxns in the minModel
0314 prepData.taskStruct = taskStruct;
0315 prepData.refModel = cModel;
0316 prepData.minModel = scaledMinModel;
0317 prepData.refModelWithBM = closeModel(cModel); %do this here so we don't have to do this for each sample
0318 prepData.groupIds = groupIds;
0319 prepData.essentialMetsForTasks = essentialMetsForTasks;
0320 
0321 prepData.toIgnoreExch = toIgnoreExch;
0322 prepData.toIgnoreImportRxns = toIgnoreImportRxns;
0323 prepData.toIgnoreSimpleTransp = toIgnoreSimpleTransp;
0324 prepData.toIgnoreAdvTransp = toIgnoreAdvTransp;
0325 prepData.toIgnoreSpont = toIgnoreSpont;
0326 prepData.toIgnoreS = toIgnoreS;
0327 prepData.toIgnoreCustomRxns = ismember(minModel2.rxns, customRxnsToIgnore);
0328 prepData.toIgnoreAllWithoutGPRs = toIgnoreAllWithoutGPRs;
0329 
0330 end

Generated by m2html © 2005