Home > core > fitParameters.m

fitParameters

PURPOSE ^

fitParameters

SYNOPSIS ^

function [parameters, fitnessScore, exitFlag, newModel]=fitParameters(model,xRxns,xValues,rxnsToFit,valuesToFit,parameterPositions,fitToRatio,initialGuess,plotFitting)

DESCRIPTION ^

 fitParameters
   Fits parameters such as maintenance ATP by quadratic programming

   model                 a model structure
   xRxns                 cell array with the IDs of the reactions that will be
                         fixed for each data point
   xValues               matrix with the corresponding values for each
                         xRxns (columns are reactions)
   rxnsToFit             cell array with the IDs of reactions that will be fitted to
   valuesToFit           matrix with the corresponding values for each
                         rxnsToFit (columns are reactions)
   parameterPositions    stucture that determines where the parameters are in the
                         stoichiometric matrix. Contains the fields:
       position          cell array of vectors where each element contains
                         the positions in the S-matrix for that parameter
       isNegative        cell array of vectors where the elements are true
                         if that position should be the negative of the
                         fitted value (to differentiate between
                         production/consumption)
    fitToRatio            if the ratio of simulated to measured values should
                         be fitted instead of the absolute value. Used to prevent
                         large fluxes from having too large impact (optional,
                         default true)
   initialGuess          initial guess of the parameters (optional)
   plotFitting           true if the resulting fitting should be plotted
                         (optional, default false)

   parameters            fitted parameters in the same order as in
                         parameterPositions
   fitnessScore          the correponding residual sum of squares
   newModel              updated model structure with the fitted parameters

 Usage: [parameters, fitnessScore, exitFlag, newModel]=fitParameters(model,...
           xRxns,xValues,rxnsToFit,valuesToFit,parameterPositions,fitToRatio,...
           initialGuess,plotFitting)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 function [parameters, fitnessScore, exitFlag, newModel]=fitParameters(model,xRxns,xValues,rxnsToFit,valuesToFit,parameterPositions,fitToRatio,initialGuess,plotFitting)
0002 % fitParameters
0003 %   Fits parameters such as maintenance ATP by quadratic programming
0004 %
0005 %   model                 a model structure
0006 %   xRxns                 cell array with the IDs of the reactions that will be
0007 %                         fixed for each data point
0008 %   xValues               matrix with the corresponding values for each
0009 %                         xRxns (columns are reactions)
0010 %   rxnsToFit             cell array with the IDs of reactions that will be fitted to
0011 %   valuesToFit           matrix with the corresponding values for each
0012 %                         rxnsToFit (columns are reactions)
0013 %   parameterPositions    stucture that determines where the parameters are in the
0014 %                         stoichiometric matrix. Contains the fields:
0015 %       position          cell array of vectors where each element contains
0016 %                         the positions in the S-matrix for that parameter
0017 %       isNegative        cell array of vectors where the elements are true
0018 %                         if that position should be the negative of the
0019 %                         fitted value (to differentiate between
0020 %                         production/consumption)
0021 %    fitToRatio            if the ratio of simulated to measured values should
0022 %                         be fitted instead of the absolute value. Used to prevent
0023 %                         large fluxes from having too large impact (optional,
0024 %                         default true)
0025 %   initialGuess          initial guess of the parameters (optional)
0026 %   plotFitting           true if the resulting fitting should be plotted
0027 %                         (optional, default false)
0028 %
0029 %   parameters            fitted parameters in the same order as in
0030 %                         parameterPositions
0031 %   fitnessScore          the correponding residual sum of squares
0032 %   newModel              updated model structure with the fitted parameters
0033 %
0034 % Usage: [parameters, fitnessScore, exitFlag, newModel]=fitParameters(model,...
0035 %           xRxns,xValues,rxnsToFit,valuesToFit,parameterPositions,fitToRatio,...
0036 %           initialGuess,plotFitting)
0037 
0038 if nargin<7
0039     fitToRatio=true;
0040 end
0041 if nargin<8
0042     initialGuess=ones(numel(parameterPositions.position),1);
0043 end
0044 if isempty(initialGuess)
0045     initialGuess=ones(numel(parameterPositions.position),1);
0046 end
0047 if nargin<9
0048     plotFitting=false;
0049 end
0050 
0051 xRxns=convertCharArray(xRxns);
0052 rxnsToFit=convertCharArray(rxnsToFit);
0053 
0054 %Find the indexes of reactions that will be fitted
0055 [I, rxnsToFitIndexes]=ismember(rxnsToFit,model.rxns);
0056 
0057 if ~all(I)
0058     EM='Could not find all reactions in rxnsToFit';
0059     dispEM(EM);
0060 end
0061 
0062 %Find the indexes of reactions that will be used for constraints.
0063 [I, xRxnsIndexes]=ismember(xRxns,model.rxns);
0064 
0065 if ~all(I)
0066     EM='Could not find all reactions in xRxns';
0067     dispEM(EM);
0068 end
0069 
0070 [parameters, fitnessScore, exitFlag]=fminsearch(@(parameters) getRSS(parameters,model,xRxnsIndexes,xValues,rxnsToFitIndexes,valuesToFit,parameterPositions,fitToRatio),initialGuess);
0071 
0072 parameters=abs(parameters);
0073 
0074 if plotFitting==true
0075     %Set the resulting parameters
0076     [~, resultingFluxes, newModel]=getRSS(parameters,model,xRxnsIndexes,xValues,rxnsToFitIndexes,valuesToFit,parameterPositions,true);
0077     plot(xValues,valuesToFit,'o',xValues,resultingFluxes,'-*');
0078 end
0079 end
0080 
0081 function [rss, resultingFluxes, newModel]=getRSS(parameters,model,xRxnsIndexes,xValues,rxnsToFitIndexes,valuesToFit,parameterPositions,fitToRatio)
0082 parameters=abs(parameters);
0083 
0084 %Set the parameters at the positions specified in parameterPositions
0085 for i=1:numel(parameterPositions.position)
0086     %Set positive
0087     model.S(parameterPositions.position{i}(parameterPositions.isNegative{i}==false))=parameters(i);
0088     
0089     %Set negative
0090     model.S(parameterPositions.position{i}(parameterPositions.isNegative{i}==true))=parameters(i)*-1;
0091 end
0092 
0093 %Also return an updated model
0094 newModel=model;
0095 
0096 %Loop through each data point, set xRxns to xValues and calculate the sum
0097 %of squares for the rxnsToFit
0098 rss=0;
0099 resultingFluxes=[];
0100 for i=1:size(xValues,1)
0101     %Fix for more xRxns!
0102     model.lb(xRxnsIndexes)=xValues(i,:);
0103     model.ub(xRxnsIndexes)=xValues(i);
0104     
0105     sol=solveLP(model);
0106     
0107     %Calculate the rss
0108     if fitToRatio==false
0109         rs=sol.x(rxnsToFitIndexes)'-valuesToFit(i,:);
0110     else
0111         rs=sol.x(rxnsToFitIndexes)'./valuesToFit(i,:)-ones(1,size(valuesToFit,2));
0112     end
0113     rss=rss+rs*rs';
0114     resultingFluxes=[resultingFluxes sol.x(rxnsToFitIndexes)];
0115 end
0116 end

Generated by m2html © 2005